submit news    HOME | FEEDBACK  


« NAVIGATION »
NEWS

- Bio/Medicine

- Chemicals

- Defense

- Drug Delivery

- Education

- Electronics

- Energy

- Events

- Grants

- Industry

- Investment

- Litigation

- Materials

- MEMS

- Nanofabrication

- Nanoparticles

- Nanotubes

- Optics

- Partnership

- Patent

- Products

- Quantum dots

- Research

- Smart Dust

- Software
COMPANIES
EVENTS

- Browse by Month

- Current Shows

- Previous Shows

- Submit Events
FEEDBACK
ADVERTISE
LINK TO US

« PARTNERS »
Become A Nanotechwire Partner

FEI Company

Veeco Instruments

Nano Science and Technology Institute

National Nanotechnology Initiative

Nanotechnology at Zyvex

Want to see your Company or Organization listed above? Become A Nanotechwire Partner Today - click here
« NEWSLETTER »



« SEARCH »







8/5/2007 4:54:51 PM
Conductive Nano-wires Created Using Self-assembly on Silicon Chips

A team of researchers from Canada have demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. Process can produce nano-wires that are 5,000 times longer than they are wide.

A team of researchers from the National Research Council and the University of Albert at the National Institute for Nanotechnology(NINT) have demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. This meets the need for connecting ever smaller transistors and other electronic components in a way that allows the user to control the composition, structure and placement of the nano-wire. Since it is also compatible with existing silicon-based fabrication techniques, it has significant potential for commercial applications. The process is described in a paper title "Assembly of aligned linear metallic patterns on silicon" published in the August 2, 2007 issue of Nature Nanotechnology and is available on-line at http://www.nature.com/nnano/index.html

The first step in the process is to facilitate the assembly of a class of polymers, called block co-polymers, within micron-scale lithographically-defined channels on the silicon surface. The block co-polymers spontaneously self-assemble into lines as narrow as 10 nanometres in diameter. These structures are then loaded with the desired metal ion in water, and the block co-polymers are removed by a plasma treatment, leaving behind the nano-wires. The resulting wires are conductive and can be created in a variety of shapes and lengths.

In one example, 25 parallel platinum nano-wires were made using this self assembly process, with each wire measuring only 10 nm in width, but extending to a length of 50 microns - a length 5,000 times greater than its width.

Project team leader Dr. Jillian Buriak described the importance of this as "a solution to a real world problem of how to integrate existing chip technology and future nano-electronic components. "

The National Institute for Nanotechnology (NINT) is an integrated, multi-disciplinary institution involving researchers in physics, chemistry, engineering, biology, informatics, pharmacy and medicine. Established in 2001, it is operated as a partnership between the National Research Council and the University of Alberta, and is jointly funded by the Government of Canada, the Government of Alberta and the university.

NINT researchers are focused on the revolutionary work being done at the nano-scale, the world of individual atoms or molecules. The main focus of nanotechnology research is the integration of nano-scale devices and materials into complex nanosystems that are connected to the outside world. The long-term objective is to discover 'design rules' for nanotechnology, and develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application.

Other Headlines from National Institute for Nanotechnology, National Research Council (NRC) ...
 - Conductive Nano-wires Created Using Self-assembly on Silicon Chips
 - Theoretical Modeling Brings New Understanding of Self-Assembly of "Cell Skeletons"
 - Researchers Map the Route of DNA Unfolding Sequence

More Research Headlines ...
 - Experiments Settle Long-Standing Debate about Mysterious Array Formations in Nanofilms
 - "Critical baby step" taken for spying life on a molecular scale
 - Seeing an atomic thickness
 - First-ever sub-nanoscale snapshots of renegade protein in Huntington's Disease
 - Karlsruhe Invisibility Cloak: Disappearing Visibly


« Back To List »

« GET LISTED »
- submit company
- submit news
- submit events
- advertise here

« EVENTS »
- More Events


Copyright 2014 Nanotechwire.com | Privacy Policy |